Multidimensional Greatest Common Divisor and Lehmer Algorithms

نویسنده

  • M. S. WATERMAN
چکیده

A class of multidimensional greatest common divisor algorithms is studied. Their connection with the Jacobi algorithm is established and used to obtain theoretical properties such as the existence of digit frequencies. A technique of D. H. Lehmer's for Euclid's algorithm is generalized for efficient computation of the multidimensional algorithms. For triples of integers, two algorithms of interest are studied empirically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Euclidean Algorithm for Gaussian Integers

We present a new algorithm for computing a greatest common divisor of any two non-zero Gaussian integers. It is Euclidean in the sense that it computes a sequence of quotients and remainders. It is approximative in the sense that it approximates the exact quotient of any two successive remainders, Ai and Ai+1, and then uses a nearest Gaussian integer, Qi, to that approximate quotient to compute...

متن کامل

Computational Number Theory and Applications to Cryptography

• Greatest common divisor (GCD) algorithms. We begin with Euclid’s algorithm, and the extended Euclidean algorithm [2, 12]. We will then discuss variations and improvements such as Lehmer’s algorithm [14], the binary algorithms [12], generalized binary algorithms [20], and FFT-based methods. We will also discuss how to adapt GCD algorithms to compute modular inverses and to compute the Jacobi a...

متن کامل

A Jacobi Algorithm and Metric Theory for Greatest Common

Greatest common divisor algorithms are used to provide a natural motivation for considering a class of Jacobi-Perron algorithms which includes the original Jacobi algorithm. This work proves convergence and establishes metric properties for one of these algorithms. The proofs generalize to the larger class of algorithms. Full connections with the calculation of greatest common divisors will be ...

متن کامل

Divisibility Theory and Complexity of Algorithms for Free Partially Commutative Groups

3.3. The greatest common divisor and the least common multiple 12 3.4. Parabolic divisors 14 3.5. Divisibility: further properties 14 4. Normal forms arising from HNN extensions 16 4.1. HNN -normal form 16 5. Conjugacy problem 18 5.1. Conjugacy Criterion for HNN -extensions 18 5.2. Block decomposition 22 5.3. Conjugacy with respect to a subgroup 23 5.4. An algorithm for solving the Conjugacy Pr...

متن کامل

Genetic Algorithms for the Extended GCD Problem

The extended greatest common divisor GCD problem is given a vector a a an of positive integers compute g the greatest common divisor of these inte gers and nd a vector x x xn of integer coe cients such that

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1977